行测

首页 >> 备考资讯 >> 行测
【数量关系】数字推理
发布日期:2013-10-12        浏览次数:1965

数量关系    

 

1、数字推理题型及讲解(1) 

     数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.

      按照数字排列的规律数字推理题一般可分为以下几种类型:

      一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:

      1、全是奇数:

      例题:1  5  3  7 ( )

A .2 B.8 C.9 D.12 

解析:答案是,整个数列中全都是奇数,而答案中只有答案C是奇数

      2、全是偶数:

      例题:2 6 4 8 ( )

A. 1 B. 3 C. 5 D. 10   

解析:答案是,整个数列中全都是偶数,只有答案D是偶数。

      3、奇、偶相间 

      例题:2 13 4 17 6 ( )

A.8 B. 10 C. 19 D. 12     

解析:整个数列奇偶相间,偶数后面应该是奇数 ,答案是

练习:2143,( ),5    99年考题

      二、排序:题目中的间隔的数字之间有排序规律

      1、例题:3421352036( )

A.19 B.18 C.17 D.16 

解析:数列中343536为顺序,2120为逆序,因此,答案为A

      三、加法:题目中的数字通过相加寻找规律

      1、前两个数相加等于第三个数

      例题:45,( ),142337

A.6 B.7 C.8 D.9 

      注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;

      解析:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D

      练习:69,( ),2439 // 1011235,( )

      2、前两数相加再加或者减一个常数等于第三数

      例题:22355690,( ) 99年考题

      A162 B.156 C.148 D.145

解析: 22+35-1=56 35+56-1=90 56+90-1=145,答案为D

      四、减法:题目中的数字通过相减,寻找减得的差值之间的规律

      1、前两个数的差等于第三个数:

      例题:633,( ),3-3

A.0 B.1 C.2 D.3 

答案是A

      解析:6-3=3 3-3=0 3-0=3 0-3=-3

      提醒您别忘了:“空缺项在中间,从两边找规律”

      

2、等差数列:

      例题:51015( ) 

A. 16 B.20 C.25 D.30 

答案是B.

      解析:通过相减发现:相邻的数之间的差都是5,典型等差数列;

      3、二级等差:相减的差值之间是等差数列

      例题:115110106103,( )

      A.102 B.101 C.100 D.99 答案是B

      解析:邻数之间的差值为543、(2), 等差数列,差值为1

      103-2=101 

      练习:8862,( ) // 137132131,( )

      4、二级等比:相减的差是等比数列

      例题:0,3,9,21,45, ( )

      相邻的数的差为3,6,12,24,48,答案为93

例题:-2,-1,1,5,( ),29 ---99年考题

解析:-1--2=1 1--1=25-1=413-5=829-13=16

        后一个数减前一个数的差值为:1,2,4, 8,16,所以答案是13

      5、相减的差为完全平方或开方或其他规律

      例题:15143055, ( )

      相邻的数的差为491625,则答案为55+36=91

      6、相隔数相减呈上述规律:

      例题:5348504547

      A.38 B.42 C.46 D.51

      解析:53-50=3 50-47=3 48-45=3 45-3=42 答案为B

      注意:“相隔”可以在任何题型中出现

      五、乘法:

      1、前两个数的乘积等于第三个数

例题:1,2,2,4,8,32,( ) 

前两个数的乘积等于第三个数,答案是256

      

2、前一个数乘以一个数加一个常数等于第二个数,n1×m+a=n2

      例题:6,14,30,62,( )

      A.85 B.92 C.126 D.250

解析:6×2+2=14 14×2+2=30 30×2+2=62 62×2+2=126,答案为C

      练习:2854106210,( )

      3、两数相乘的积呈现规律:等差,等比,平方,...

      例题:3/2, 2/3, 3/41/33/8 ( ) (99年海关考题)

      A. 1/6 B.2/9 C.4/3 D.4/9

      解析:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/8

      3/8×?=1/16 答案是 A

      六、除法:

      1、两数相除等于第三数

      2、两数相除的商呈现规律:顺序,等差,等比,平方,...

      七、平方:

      1、完全平方数列:

      正序:491625 

      逆序:10081644936

      间序:1124394,(16

   

      2、前一个数的平方是第二个数。

1) 直接得出:2416,(  )  

解析:前一个数的平方等于第三个数,答案为256

      2)前一个数的平方加减一个数等于第二个数:

      12526,(677) 前一个数的平方减1等于第三个数,答案为677

      3、隐含完全平方数列:

      1)通过加减化归成完全平方数列:0381524,( )

       前一个数加1分别得到1491625,分别为12345的平方,答案为6的平方36

      2)通过乘除化归成完全平方数列:

      3122748,( )

      3, 122748同除以3,得14916,显然,答案为75

      3)间隔加减,得到一个平方数列:

      例:653517,( ),

      A.15 B.13 C.9 D.3

      解析:不难感觉到隐含一个平方数列。进一步思考发现规律是:65等于8的平方加135等于6的平方减117等于4的平方加1,所以下一个数应该是2的平方减1等于3,答案是D.

      练习1653517,(3 ),1 A.15 B.13 C.9 D.3

      练习20, 2, 818,(24 ) A.24 B.32 C.36 D.52( 99考题)

      八、开方:

      技巧:把不包括根号的数(有理数),根号外的数,都变成根号内的数,寻找根号内的数之间的规律:是存在序列规律,还是存在前后生成的规律。

   

      九、立方:

      1、立方数列:

      例题:182764,( )

      解析:数列中前四项为1234的立方,显然答案为5的立方,为125

      2、立方加减乘除得到的数列:

      例题:072663 ,( )

      解析:前四项分别为1234的立方减1,答案为5的立方减1,为124

      十、特殊规律的数列:

      1、前一个数的组成部分生成第二个数的组成部分:

  

      例题:11/22/33/55/88/13,( )

      答案是:13/21,分母等于前一个数的分子与分母的和,分子等于前一个数的分母。

      2、数字升高(或其它排序),幂数降低(或其它规律)。

      例题:1894,( ),1/6

      A3 B.2 C.1 D.1/3

      解析:1894,( ),1/6依次为14次方,2的三次方,32次方(平方),4的一次方,(  ),6的负一次方。存在1234,(    ),64321,( ),-1两个序列。答案应该是50次方,1

数字推理题型及讲解(2) 

以上我们介绍了数字推理的基本题型和规律,下面我们归纳总结:

数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。

   在实际解题过程中,我们根据相邻数之间的关系分为两大类:

一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:

1、 相邻两个数加、减、乘、除等于第三数

2、 相邻两个数加、减、乘、除后再加或者减一个常数等于第三数

3、 等差数列:数列中各个数字成等差数列 

4、 二级等差:数列中相邻两个数相减后的差值成等差数列

5、 等比数列 :数列中相邻两个数的比值相等

6、 二级等比:数列中相邻两个数相减后的差值成等比数列

7、 前一个数的平方等于第二个数

8、 前一个数的平方再加或者减一个常数等于第二个数;

9、 前一个数乘一个倍数加减一个常数等于第二个数;

10、 隔项数列:数列相隔两项呈现一定规律,

11、 全奇 、全偶数列

12、 排序数列

二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、 数列中每一个数字都是的平方构成或者是的平方加减一个常数构成,或者是n的平方加减n构成

2、 每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n

3、 数列中每一个数字都是n的倍数加减一个常数

以上是数字推理的一些基本规律,考生必须掌握。但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?

  这就需要学员在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

这里我们提供为刚刚接触数字推理题型的学员提供一种最基本的解题思路,学员按照这种思路来训练自己,能够逐步熟悉各种题型,掌握和运用数字推理的基本规律。当学员对题型和规律已经很熟悉后,就可以按照自己的总结的简单方法来解答问题。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答

第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。我们这里所介绍的是数字推理的一般规律,学员在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案的。

例题:

14571119 ( )(2002年试题)

A27  B31  C 35  D  41

解题思路:1、首先此题不是隔项数列。两个数相加不等于第三数。两个数相减的差为1248,分别是20次方,1次方,2次方,3次方,因此,答案应为19加上24次方,即35,答案为C

例题234  36  35  35 ( )34  37  (  )(2002年试题)

A3633    B3336    C3734    D3437

解题思路:首先观察数列,看是否为隔项数列。此数列,隔项分别为34  35 () 3736  35  34  ( )两个数列,答案为A

数字推理强化练习题(一)(二) 

强化练习一

    

      1、 3  6  18  36 (  B )

      A.72 B.108 C.144 D.180

       22 13 4 17 6 C )

     A.8 B. 10 C. 19 D. 12 奇偶相间

      3115110106103(B )

     [A102B101C100D99

     4 491625(D )

     [A18 B26 C33 D36

       5, 3421352036( A)

      [A] 19B18C17D16

       632 27 23 20 (C )

      A.15 B.17 C.18 D.19

      745( D)142337

      [A6B7C8D9

       (思路:前两个数相加等于第三数)

      80.91.11.31.51.7(B )

      [A1.8B1.9C2.1D2.3

      910081644936( B)

      [A30B25C20D15

      10633(A )3-3

      [A0B1C2D3

      (思路:前两个数相减等于第三数)

      1169( D)2439

      [A10B11C13D15

       (思路:前两个数相加等于第三数)

      1212526( D)

      [A31B51C8D677

      13653517( D)1

      [A15B13C9D3

      146143062( C)

      [A85B92C126D250

      158862( D)

      [A] 2B1C0(D)-4

      16. -2 -1 1 5 C) 292000年题)

      A.17 B.15 C.13 D.11 

        (思路:后数减前一个数等于20123方)

      17. 2854106210( C)

      [A316B420C418D450

      18. 14710(C)

      [A] 11B12C13D14

      19. 0 2 8 18 ( B) (99年题)

      A.24 B.32 C.36 D.52

      

      20.6 18 (B ) 78 126 2001年题)

      A.40 B.42 C.44 D.46

      (思路:后数减前一个数分别为121倍、2倍、3倍)

      强化练习一答案

       1[B2[C3[B4[D5[A] 6[C 7[D8[B9[B10[A11[D12[D 

      13[D14[C15[D16[C17[C] 18[C19[B20[B

       强化练习二及答案

      1-2 -1 1 5 ( C) 29

      A 17 B 15 C 13 D 11 

      2 . 1 4 3 (D ) 5 

      A 1 B 2 C 3 D 6 

      3. 1 8 9 4 (C ) 1/6

      A 3 B 2 C 1 D 1/3

      4. 22 35 56 90 (D ) 234

      A 162 B 156 C 148 D 145 

      5. 375 127 248 -121 ( A)

      A. 369 B. 127 C. 127 D.369

      (思路:后两个数相加和为前一个数。)

      6. 1 2 2 4( C32

      A4 B6 C8 D16

      (思路:前两个数相乘得后一个数)

      72/5 4/9 6/13 8/17 ( D

      A10/19 B11/21 C9/20 D10/21

      (思路:分子为偶数列,分母为公差是4的数列)

      8155 132 109 86 ( C

      A23 B55 C63 D43

      (思路:此为一组公差为23的等差数列)

      92544186,( C),82

      A12 B9 C6 D4

      10. 1/16 1/8 1/4 (&nbs, p;B) 11/16

      A.1/2 B.7/16 C.2/3 D.5/16

      11. 0 7 26 63 (A )

      A.124 B.114 C.108 D.98

      12. 32 27 23 20 (C )

      A.15 B.17 C.18 D.19

      13. 2 3 5 9 17  ( A)

      A.33 B.50 C.53 D.56

      14. 0 2 8 18 ( B)

      A.24 B.32 C.36 D.52

      15. 2 3 5 9 17 ( C)

      A.29 B.31 C.33 D.37

      161, √2, ( D), 2, √5

      A 22 B2/2 C3/2 D 3

      17072663( C),…

      [A] 89B108C124D148

      18√22( A)44√ 2,……

      [A22B32C] D23

      191244/34/9(B ),…

      [A4/12B4/27C4/36D4/81

      201.011.022.033.055.08(C )13.21,…

      [A] 8.11B8.12C8.13D8.14 

      答案:

       1[c2[D3[C4[D5[A

         6[C7[D8[C9[C

         10B]      11[A12[C13[A14[B15(C)16[D

17[C] 18[A 19[B20[C

2、数学运算 

数学运算题型及讲解

  数学运算见解:

      1、 考生首先要明确出题者的本意不是让考生来花费大量时间计算,题目多数情况是一种判断和验证过程,而不是用普通方法的计算和讨论过程,因此,往往都有简便的解题方法。

      2、 认真审题,快速准确地理解题意,并充分注意题中的一些关键信息;通过练习,总结各种信息的准确含义,并能够迅速反应,不用进行二次思维。

      3、 努力寻找解题捷径。大多数计算题都有捷径可走,盲目计算可以得出答案,但时间浪费过多。直接计算不是出题者的本意。平时训练一定要找到最佳办法。考试时,根据时间情况,个别题可以考虑使用一般方法进行计算。但平时一定要找到最佳方法。

      4、 通过训练和细心总结,尽量掌握一些数学运算的技巧、方法和规则,熟悉常用的基本数学知识;

      5、 通过练习,针对常见题型总结其解题方法;

      6、 学会用排除法来提高命中率;

数学运算主要包括以下几类题型:

一、数学计算

基本解题方法:

1、尾数排除法:先计算出尾数,然后用尾数与答案中的尾数一一对照,利用排除法得出答案;

2、简便计算:利用加减乘除的各种简便算法得出答案。

通过下面的例题讲解,来帮助您加深对上述方法理解,学会灵活运用上述方法解题。

      1、加法:

      例1425+683+544+828    A.2480 B.2484 C.2486 D.2488

解题思路:先将各个数字尾数相加,然后将得到的数值与答案的尾数一一对照得出答案。尾数相加确定答案的尾数为0BCD都不符合,用排除法得答案A

      例21995+1996+1997+1998+1999+2000

      A11985 B.11988 C.12987 D.12985

解析:这是一道计算题,题中每个数字都可以分解为2000减一个数字的形式2000×6-5+4+3+2+1)尾数为100-15=85 A

      注意:12000×6-5+4+3+2+1)尽量不要写出来,要心算;

            21+2+。。+5=15是常识,应该及时反应出来;

            3、各种题目中接近于10020010002000等的数字,可以分解为此类数字加减一个数字的形式,这样能够更快的计算出答案。

      例312.3+45.6+78.9+98.7+65.4+32.1

      A333 B.323 C.333.3 D.332.3

解析:先将题中各个数字的小数点部分相加得出尾数,然后再将个位数部分相加,最后得出答案。 

本题中小数点后相加得到3.0排除C,D

              小数点前的个位相加得2+5+8+8+5+2尾数是0,加上3确定

答案的尾数是3.答案是A

解题思路:1、先将小数点部分加起来,得到尾数,然后与答案一一对照,排除其中尾数不对的答案,缩小选择范围。有些题目此时就可以得到答案。

  2、将个位数相加得到的数值与小数点相加得到的数值再相加,最后得到的数值与剩下的答案对照,一般就可以得到正确的答案了。

2、减法:

      例19513-465-635-113=9513-113 -465+635=9400-1100=8300

      例2489756-263945.28= 

      A.220810.78 B.225810.72 C.225812.72 D.225811.72

      解析:小数点部分相加后,尾数为72 排除A, 个位数相减6-1-5=0,排除CD,答案是B

3、乘法:

   方法:

1、将数字分解后再相乘,乘积得到类似于110100之类的整数数字,易于计算;

2、计算尾数后在用排除法求得答案。

      例11.31×12.5×0.15×16=A.39.3 B.40.3 C.26.2 D.26.31

      解析:先不考虑小数点,直接心算尾数: 125×8=1000 2×15=30 3×131=393 符合要求的只有A

      例2119×120=120×120-120=14400-120=。。。80

解析:此题重点是将119分解为120-1,方便了计算。

      例3123456×654321=

      A. 80779853376 B.80779853375 C.80779853378 D.80779853377

      解析:尾数是6,答案是A。此类题型表面看来是很难,计算起来也很复杂,但我们应该考虑到出题本意决不是要我们一点一点地算出来,因此,此类题型用尾数计算排除法比较容易得出答案。

4125×437×32×25=(  )

  A43700000     B87400000      C87455000     D43755000

答案为A。本题也不需要直接计算,只须分解一下即可:

125×437×32×25=125×32×25×437=125×8×4×25×437=1000×100

×437=43700000

      5、混合运算:

    例1、  85.7-7.8+4.3-12.2=85.7+4.3-(7.8+12.2)=90-20=70

      4532=4532×(79÷158)=4532÷2=2266

2、计算(1-1/10)×(1-1/9)×(1-1/8)×……(1-1/2)的值:

  A1/108000     B1/20           C1/10          D1/30

解析:答案为C。本题只需将算式列出,然后两两相约,即可得出答案。考生应掌握好这个题型,最好自行计算一下。

      二、时钟问题:

      例题:从上午五点十五分到下午两点四十五分之间,共有多少时间?

      A. 8小时 B.8小时30分 C.9小时30分 D.9小时50

      答案是14.45-5.15=9.30 C

      三、百分数问题:

      例题:如果ab25%,则ba小多少?

      解析:本题需要对百分数这个概念有准确的理解。ab25%,即a=1.25b,因此ba小:(a-b)/a×100%=20%

      四、集合问题:

      例题:某班共有50名学生,参加数学和外语两科考试,已知数学成绩及格的有40人,外语成绩及格的有25人,据此可知数学成绩及格而外语不及格者:

      A.至少有10人 B.至少有15人 C.20人 D.至多有30

      解析:这是首先排除D,因为与已知条件”外语及格25人”即”外语不及格25人”不符;其次排除C,因为仅以外语及格率为50%推算数学及格者(40)中外语不及格人数为40×50%=20,缺乏依据;实际上,数学及格者中外语不及格的人数至少为25-(50-40)=15,答案是B.

五、大小判断

  这种题型往往并不需要将全部数字都直接计算,只需找到某个判断标准进行

判断即可。

例题:

1、π,3.14,√1010/3四个数的大小顺序是:

A10/3﹥π﹥√103.14

B10/3﹥π﹥3.14﹥√10

C10/3﹥√10﹥π﹥3.14

D10/33.14﹥π﹥√10

2、某商品在原价的基础上上涨了20%,后来又下降了20%,问降价以后的价

格比未涨价前的价格:

A、涨价前价格高

B、二者相等

C、降价后价格高

D、不能确定

3393.39的小数点先向左移动两位,再向右移动三位,得到的数再扩大10倍,

最后的得数是原来的

   A10倍         B100倍        C1000倍        D、不变

解答:

1、答案为C。本题关键是判断√10的大小。而另外三个数的大小关系显然为

10/3﹥π﹥3.14。因此就要计算√10的范围。我们可计算出3.15的平方为9.9225

10,由此可知符合此条件的只有C

2、答案为A。涨价和降价的比率都是20%,那么要判断涨得多还是降得多,

就需要判断涨价的基础,显然后者大,即降的比涨的多,那么可知原来价格高。

3、答案为B。本题比较简单,左移两位就是缩小100倍,右移三位就是扩大

1000倍,实际上扩大了10倍,再扩大10倍,就是扩大了100倍。

六、比例问题

例题:

1)甲数比乙数大25%,则乙数比甲数小:

     A20%            B25%        C33%           D30%

2a数的25%等于b数的10%,则a/b为:

     A2/5           B3/5           C2.4倍          D3/5

3)三个学校按235的比例分配27000元教育经费,问最多一份为多少?

     A2700元       B5400元       C8100元       D13500

4)在某大学班上,选修法语的人与不选修的人的比率为25。后来从外班转入

2个也选修法语的人,结果比率变为12,问这个班原来有多少人?

     A10             B12            C21            D28

解答:

1)答案为A。计算这类题目有多种方法,最简便的是假设乙数为1,则甲数可

知为1.25,再加以简单的计算就可推知答案。

2)答案为A。可列一个简单的算式:a·25%=b·10%,即可算出答案。

3)答案为D

4)答案为D。假设原来班上有X个人,解一个简单的一元一次方程即可:

     2/3x+2=5/7 x或者22/7 x+2=5/7 x

七、工程问题

例题:

1)某车间原计划15天装300台机器,现要提前5天完成,每天平均比原计划

多装多少台?

    A10             B20            C15         D30

2)一本270页的书,某人第一天读了全书的2/9,第二天读了全书的2/5,则第

二天比第一天多读了多少页?

    A48             B96             C24        D72

3)一项工程甲单独做需要20天做完,乙单独做需要30天做完,二人合做3

后,可完成这项工作的:

    A1/2             B1/3           C1/4         D1/6

4)一个水池,装有甲、乙、丙三根水管,独开甲管10分钟可注满全池,独开

乙管15分钟可注满全池,独开丙管6分钟可注满全池,如果三管齐开,几分钟可注

满全池?

    A5               B4            C3          D2

5)某水池装有甲、乙、丙三根水管,独开甲管12分钟可注满全池,独开乙管8

分钟可注满全池,独开丙管24分钟可注满全池,如果先把甲乙两管开4分钟,再单

独开乙管,问还用几分钟可注满水池?

   A4                B5            C8          D10

解答:

1)答案为A。原计划每天装的台数可求为20台(300÷15),现在每天须装的

台数可求为30台(300÷10),由此答案自出。

2)答案为A。第二天读了108页书(270×2/5),第一天读了60页书(270×2/9),

则第二天比第一天多读了48页书(108-60)。

3)答案为C。甲、乙两人同时做,一共需要的时间为:1÷(1/20+1/30),结果

12天,因此,3天占12天的1/4

4)答案为C。甲、乙、丙三管同时开放,注满水池的时间为:1÷(1/10+1/15+1/6),

结果为3天。

5)答案为A。甲、丙两管共开4分钟,已经注入水池的水占全池的比例为:1-

1/12+1/24)×4,结果为1/2。乙单独开注满全池的时间为8分钟,已经注入了1/2

显然只需4分钟即可注满。本题与前题类似,只是稍微复杂一些。

八、路程问题

例题:

1)甲乙两地相距40公里,某人从甲地骑车出发,开始以每小时30公里的速度

骑了24分钟,接着又以每小时8公里的速度骑完剩下的路程。问该人共花了多少

分钟时间才骑完全部路程?

    A117              B234          C150           D210

2)小王在一次旅行中,第一天走了216公里,第二天又以同样速度走了378

里。如果第二天比第一天多走了3小时,则小王的旅行速度是多少(公里/小时)?

    A62               B54           C46            D38

3)某人从甲地步行到乙地,走了全程的2/5之后,离中点还有2.5公里。则甲、

乙两地距离多少公里?

    A15               B25           C35            D45

解答:

1)答案为B。前半段花了24分钟时间,走的路程为:24/60×30=12(公里)。

则剩下的路程为:40-12=28(公里)。28公里的路程,时速为8,则花时候为3.5

小时(28÷8),3.5小时与24分钟之和即为234分钟。

2)答案为B。第二天比第一天多走3个小时,多走的路程为162公里(378-216),

则速度可知。

3)答案为B。全和的2/5处与1/2处相距2.5公里,这一段路程占全程的1/10

1/2-2/5),则全程为:2.5÷1/10=25公里。

九、对分问题

例题:

一根绳子长40米,将它对折剪断;再对剪断;第三次对折剪断,此时每根绳子长

多少米?

     A5          B10           C15           D20

解答:

答案为A。对分一次为2等份,二次为2×2等份,三次为2×2×2等份,答案可

知。无论对折多少次,都以此类推。

十、“栽树问题”

例题:

1)如果一米远栽一棵树,则285米远可栽多少棵树?

  A285            B286          C287      D284

2)有一块正方形操场,边长为50米,沿场边每隔一米栽一棵树,问栽满四周

可栽多少棵树?

  A200            B201         C202      D199

解答:

1)答案为B1米远时可栽2棵树,2米时可栽3棵树,依此类推,285米可栽

286棵树。

2)答案为A。根据上题,边长共为200米,就可栽201棵树。但起点和终点重

合,因此只能栽200棵。以后遇到类似题目,可直接以边长乘以4即可行也答案。

考生应掌握好本题型。

十一、跳井问题

例题:

青蛙在井底向上爬,井深10米,青蛙每次跳上5米,又滑下来4米,象这样青蛙

需跳几次方可出井?

  A6次             B5次          C9次          D10

解答:答案为A。考生不要被题中的枝节所蒙蔽,每次上5米下4米实际上就是每

次跳1米,因此10米花10次就可全部跳出。这样想就错了。因为跳到一定时候,

就出了井口,不再下滑。

十二、会议问题

例题:某单位召开一次会议。会前制定了费用预算。后来由于会期缩短了3天,

因此节省了一些费用,仅伙食费一项就节约了5000元,这笔钱占预算伙食费的1/3

伙食费预算占会议总预算的3/5,问会议的总预算是多少元?

A20000          B25000           C30000         D35000

解答:答案为B。预算伙食费用为:5000÷1/3=15000元。15000元占总额预算的

3/5,则总预算为:15000÷3/5=25000元。本题系1997年中央国家机关及北京市公

务员考试中的原题(或者数字有改动)。

十三、日历问题

例题:

某一天小张发现办公桌上的台历已经有7天没有翻了,就一次翻了7张,这7

的日期加起来,得数恰好是77。问这一天是几号?

A13          B14            C15          D17

解答:答案为B7天加起来数字之和为77,则平均数11这天正好位于中间,答案

由此可推出。

十四、其他问题

例题:

1)在一本300页的书中,数字“1”在书中出现了多少次?

   A140            B160           C180       D120

2)一个体积为1立方米的正方体,如果将它分为体积各为1立方分米的正方体,

并沿一条直线将它们一个一个连起来,问可连多长(米)?

   A100           B10             C1000          D10000

3)有一段布料,正好做16套儿童服装或12套成人服装,已知做3套成人服装比

2套儿童服装多用布6米。问这段布有多少米?

   A24            B36              C48           D18

4)某次考试有30道判断题,每做对一道题得4分,不做或做错一道题倒扣2分,

小周共得96分,问他做对了多少道题?

   A24            B26              C28           D25

5)树上有8只小鸟,一个猎人举枪打死了2只,问树上还有几只鸟?

   A6            B4             C2             D0

解答:

1)答案为B。解题时不妨从个位、十位、百位分别来看,个位出现“1”的次数为

30,十位也为30,百位为100

2)答案为A。大正方体可分为1000个小正方体,显然就可以排1000分米长,1000

分米就是100米。考生不要忽略了题中的单位是米。

3)答案为C。设布有X米,列出一元一次方程:X/6×3-X/2×2=6,解得X=48

米。

4)答案为B。设做对了X道题,列出一元一次方程:4×X-30-X)×2=96,解

X=26

5)答案为D。枪响之后,鸟或死或飞,树上是不会有鸟了。

数学运算强化练习题 

    11.31×12.5×0.15×16的值是:( )

      A39.3 B40.3 C26.2 D26.31

    2. 84.78元、59.50元、121.61元、12.43元以及66.50元的总和是:(99年题)

      A. 343.73 B.343.83 C.344.73 D.344.82

      解答:。实际上你只要把最后一位小数加一下,就会发现和的第二位小数是2,只有D符合要求。

3. 1 3579......399的值为:( )(99年题)

      A.160000 B.80000 C.60000 D.40000

4. 454999×999545的值为:( )

      A.899998 B.999998 C.1008000 D.99900099年题)

5.85.7-7.8+4.3-12.2的值是:( )

      A60 B70 C80 D81

6. 12-22+32-42+52-62+72-82+92-102的值为:( )(99年题)

      A.55 B.-55 C.50 D.-50

7425+683+544+828的值是:

    A2480 B2484 C2486 D2488

8523+746+589+423的值是:

   A2281 B2180 C2280 D2380

91995+1996+1997+1998+1999+2000的值。A11985 B11988 C12987 D12985

1080×35×15的值是:

 A42000 B36000 C33000 D48000

11456×55+457×45的值是:

       A45645 B45655 C45665 D45675

127900÷25÷8的值是:

      A39 B39.5 C41.5 D42.5 13123456×654321的值为:

    A80779853376 B80779853375 C80779853378 D80779853377

14 423×187-423×24-423×63的值是:

 A41877 B42300 C42323 D42703

15.大于4/5且小于5/6的数是:( )      A.6/7 B.21/30 C.49/60 D.47/61

16119×120的值是:

 A14280 B14400 C14820 D12840

179513-465-635-113的值是:

   A8275 B8270 C8300 D8370

18725×69÷23的值是:

       A2175 B2075 C4175 D3075

      1928.73+49.64+83.71+69.48的值是:

       A231.55 B271.55 C231.56 D264.78

      20. 27的开方乘以48的开方等于:

       A39 B36 C35 D38

      21从489756中减263945.28,还剩下:

      A220810.78 B225810.72 C225812.72 D225811.72

      2212.3米、45.6米、78.9米、98.7米、65.4米及32.1米的总和是:

       A333 B323 C333.3 D332.3

      23中午12点整时,钟面上时针与分针完全重合。那么到下次12点时,时针与分针 重合了多少次?

      A10 B11 C12 D13

      24甲数加3,乙数减8,则甲乙两数相等,那么乙比甲数:

       A多8 B多3 C多11 D少11

      25被2除余1, 32, 4除余3 ,54的最小数为多少?

      A. 29 B. 39 C. 59 D. 74

      说明: 3×4×5-1=59

      261公里3华里5235厘米是多少米?

      A15235 B255235 C355235 D152

      27一条走廊长200米,每隔4米放一盆花,问共要放多少盆花

      A49 B50 C51 D52

      28.师徒二人负责生产一批零件,师傅完成全部工作数量的一半还多30个,徒弟完成了师傅生产数量的一半,此时还有100个没有完成,师徒二人已经生产多少个?( 

      )

      A.320 B.160 C.480 D.580 99年题)

      29老王住在6楼,每层楼之间楼梯级数都是16,则老王每次回家要爬多少级楼梯?

      A96 B88 C80 D90

      30做1面国旗要3种颜色的布,问做4面国旗要用几种颜色的布?

      A12 B10 C8 D3

      31一个分数的分母扩大3倍,分子不变,分数值则:

       A扩大3倍 B缩小3 C不变 D缩小30

      32.某人用4410元买了一台电脑,其价格是原来定价相继折扣的10%2%,则电脑原来定价是多少?( )(2000年题)

      A.4950 B.4990 C.5000 D.5010

      33用9803组成的最大的四位数是:

      A8930 B9930 C9380 D9830

      3440条鱼重20千克,每条鱼平均重多少千克?

      A25 B45 C2 D05

      35.今年父亲的年龄是儿子年龄的10倍,6年后父亲的年龄是儿子年龄的4倍,则今年父亲、儿子各几岁?( )(2000年题)

      A.60,6 B.50,5 C.40,4 D.30,3 

      36从上午五点十五分到下午两点四十五分之间,共有多少时间

      A8小时 B8小时30 C9小时30分 D9小时50

      37一块长20分米的木头,锯成两块,短的一块只有长的一块的2/3长,短的一块有多长?

       A12分米B 9分米 C8分米 D7分米

      38甲地和乙地相距500千米,如果在1厘米等于50千米比例表的地图上,这两地之间的距 离是多少厘米?

       A5 B10 C15 D100

       39A箱长、宽、高都是4米,B箱长,宽、高都是2米,问A箱的体积是B箱的几倍?

      A05 B2 C4 D8

      40.甲、乙两人从400米的环形跑道的一点A,背向同时出发,8分钟后,两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点,与A点沿跑道上的最短距离是多少?( 

      )

      A.166 B.176 C.224 D.234 2000年题)

      41牛奶中含4%的奶油,问制造20千克奶油需要多少千克牛奶?

      A1 B50 C100 D500

      42.有一水池,单开A10小时可注满,单开B12小时可注满,开了两管5小时后,A管坏了,只有B管继续工作,则注满一池水共用了多少小时?( )

      A.8 B.9 C.6 D.10 99年题)

      43. 小李今年36,当她到45岁的时候她女儿的年龄正好是她现在年龄的一半,那么她女儿今年( )

      A. 6 B. 9 C. 12 D. 18

      说明可用排除法或36÷2-(45-36)=9]

      44一件工程,甲队单独作15天可完成,乙队单独作10天可完成。现甲队先单独作天,而后两队合作,还需要多少天时间可完成?

      A5天 B6天 C4天 D7

      45某班50名学生,在第一次测验中26人满分,在第二次测验中21人满分,如果两次测验中 

      都没得到满分的学生有17人,那么两次测验中都获得满分的人数是:

       A14 B12 C17 D20

      46甲乙两个工程队共有100人,如果抽调甲队人数的1/4至乙队,则乙队数比甲队多了2/9 ,问甲队原有多少人:

       A56 B50 C60 D64

       

      47.某机关共有干部职工350人,其中55岁以上共有70人。现拟进行机构改革,总体规模压缩为180人,并规定55岁以上的人裁减比例为70%。请问55岁以下的人裁减比例约是多少?( 

      )(2000年题)

      A.51% B.43% C.40% D.34%

      48如果AB,且C为正数,请问下列式子中哪一个是错误的?

      AABBC BC-AC-B CA+CB+C DA/CB/C

       

      49.某储户于199911日存入银行60000元,年利率为2.00%,存款到期日即200011日将存款全部取出,又国家规定凡1999111日后孳生的利息收入应缴纳利息税,税率为20%。问该储户实际提取本金合计多少元?( 

      )(2000年题)

      A.61200 B.61160 C.61000 D.60040

      50一件商品原价5元,先加价20%后不久又降价20%,这件商品的现价是多少元?

      A5 B6 C4.5 D4.8

      数学计算强化练习答案

      1[A2[D3[D4[D5[B] 6[D

      7[A8[A9[A10[A11[A12 [B13[A14[B15[C16[A17[C1 8[A19[C20[B21[B22[A23[B2 4[C25[C26[B27[C28[C29[C3 0[D31[B32[C33[D34[D35[D3 6[C37[C38[B39[D40[B41[D4 2[C43[B44[C45[A46[C47[B4 8[B

      49[B50[D